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Complementarity of su,Q) and U,@) and q-boson realization 
of the SU, (3) irreducible representations 

C Quesnetx 
Physique NuclQire Thhrique et Physique MalhCmalique. UnivenitC t ibre de Bmelles. 
Campus de la Plaine CP229. Bd. du "nphe.  B1050 Bnuelles, Belgium 

Received 24 December 1991, in final form 24 July 1992 

AbsImcL The complementarity relationship (also termed duality) that arises between 
the irreps of the 4 3 )  and 4 2 )  Lie algebras when their direct sum 4 3 )  fB 4 2 )  is 
embedded into a larger " ( 6 )  algebra and single-row irreps of the latter are considered 
is extended to the corresponding q-algebras 4 3 )  and ~ ~ ( 2 ) .  I t  is demonstrated by 
explicitly constructing the unique ?boson slate lhat is simullaneously maximal in suq(3) 
and u,(2) for a given up(2) weight. In addition, the relations between the su,(3) 
and u,(2) Casimir operators resulting from their complementarity are explicilly found. 
Together with the qBargmann representation of 9-boson operators, the complementarity 
relalionship is then used to ~onslruct a Gel'fand-Tseitlin basis for arbilrary su,(3) i r rep 
in terms of g-boson operators. 

1. Introduction 

In recent years, a great deal of activity has been directed towards the exploration 
of quantized universal enveloping algebras, also called q-algebras or quantum groups 
(Jimbo 1985a. Drinfeld 1986). These new mathematical objects were developed in the 
theory of quantum integrable systems, where the Yang-Baxter equation plays a crucial 
role. Their relation to non-commutative geometry and the theory of knots and links 
has also attracted great interest In physics, they have made their appearance in many 
fields, such as statistical mechanics, conformal field theory, quantum optics, molecular, 
atomic and nuclear spectroscopy (for reviews and references see e.g. Majid 1990, 
Zachos 1991). 

In order to apply q-algebras in physics, one needs a well developed theory of their 
representations. Hopefully, the latter bears much similarity to that of ordinary Lie 
algebras. In particular, whenever q is not a root of unity, for any finite-dimensional 
irreducible representation (irrep) of a given simple Lie algebra, there is an irrep of the 
corresponding q-algebra that has the same dimension and the same weight spectrum, 
and so can be uniquely labelled by its highest weight (Lusztig 1988, Ross0 1988). For 
u,(n), for instance, one can associate a unitary irrep with any n-row Young diagram. 

The analogies between Lie algebras and q-algebras can also be extended to some 
subalgebra chains, such as u ( n )  3 u(n  - 1) and u,(n) 3 u,(n - l), which admit 
the same branching rule (Jimbo 1985b, Ueno el a/ 1989). Both of these chains are 
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canonical, which means that any irrep of u(n-1) (resp. U,( n- 1)) is contained in any 
irrep of u(n) (resp. u , (n))  with a multiplicity at most equal to 1. Hence, as in the Lie 
algebraic case, the irreps of the q-subalgebras u,(n - 1) 3 u,(n -2)  2 . . . 2 u,(l) 
may serve to completely specify for any unitary irrep of U,( n) an orthonormal basis, 
the so-called Gel'fand-Theitlin (GT) basis (Gel'fand and Theitlin 1950). The latter may 
be constructed by means of lowering operators acting on its highest-weight vector 
(Ueno el  a1 1989, Quesne 1992). 

The purpose of the present paper is to explore the extension to q-algebras of a 
special type of relationship, termed either complementarity (Moshinsky and Quesne 
1970) or duality (Howe 1979), that arises between the irreps of some Lie algebras 
h,, h, when their direct sum h, €e h, is embedded into a larger algebra g and 
some special irreps of the latter are considered. The prototype of this relationship is 
provided by the chain u(6) 3 su(3) @ u(2): in the decomposition of the u(6) single- 
row irreps into direct sums of su(3) and u(2) irreps, the latter appear in a one-to-one 
correspondence, associated irreps being characterized by the same two-row Young 
diagram (Moshinsky 1962, 1963, Baird and Biedenharn 1963). In the present work, 
the same branching rule will be shown to he valid for the corresponding q-algebra 
chain u,(6) 3 su,(3) + u,(2).t 

Tb prove this result, it will be useful to realize the q-algebras u,(6), su,(3), 
and uq(2) in terms of the q-boson operators that were independently introduced 
by Biedenharn (1989) and Macfarlane (1989) to construct for sue(2) a q-analogue 
of the su(2) Schwinger realization (Schwinger 1965). Similar realuations were also 
obtained for su,( n )  (Sun and Fu 1989), and more generally for all classical q-algebras 
(Hayashi 1990). In the case of su,(n) with n > 2, they have been restricted so far to 
single-row irreps by using only n pairs of q-boson creation and annihilation operators. 
Since, in the present work, we shall deal with two-row irreps of su,(3), to get an 
appropriate realization we shall need 6 pairs of q-boson operators and make explicit 
use of the co-product of the su,(3) co-algebra structure. 

Using q-boson realizations of q-algebras allows us to replace complicated q- 
commutation relations by q-differential calculus (Gasper and Rahman 1990). Such 
a simplification is based upon the q-analogue of the Bargmann representation 
(Bargmann 1961) of boson opelators (Kulish and Damaskinsky 1990, Gray and 
Nelson 1990, Quesne 1991). 

As a by-product of our demonstration procedure, we shall also obtain a concrete 
realization in terms of q-boson operators of the su,(3) GT basis, which was abstractly 
constructed by Ueno el  al (1989) (see also Smirnov el a1 1991). Together with a 
similar realization given for u,(2) by Biedenharn and Lohe (1991a, b), this paves 
the way for expressing the GT basis of two-row U,(.) irreps in terms of 2n pairs of 
q-boson operators. 

The realization of the GT basis presented here differs from that based upon a 
recursive procedure, recently proposed for su,(2) by Quesne (1991), and for su,(3), 
and more generally u,(n), by Biedenharn and Lohe (1991a. b). According to the 
latter, su,(3) irrep GT basis vectors are obtained by su,(2) coupling a q-bosonic 
realization of an su,(2) irrep with an abstract vector in u,(2) f3 ~ ~ ( 1 ) .  This type of 
approach extends to q-algebras the su(2) Dyson realization (Dyson 1956), generalized 
to other Lie algebras via vector coherent state theory (Deenen and Quesne 1984, 

t After submitting the present paper, lhe aulhor received a preprinr of Smimov and lblstoy (1991), 
wherein a similar result is cnablished. 
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Rowe 1984). 
In the following section, we review the defining relations for sup( n) and uq( n )  and 

apply them to u9(6), su,(3), and ~ ~ ( 2 ) .  In section 3, we present q-boson realizations 
of the latter. In section 4, we demonstrate the complementarity between su,(3) 
and u,(2) by explicitly constructing the unique q-boson state that is simultaneously 
maximal in su,(3) and u,(2) for a given u,(2) weight. In section 5, we find the 
expressions of the su,(3) Casimir operators in terms of those of uq(2), resulting 
from the complementarity of both q-algebras. Finally, in section 6, we construct a GT 
basis for the su9(3) irreps in terms of q-boson operators. 

2. Defining relations for u,(6), suq(3) and uq(2) 

The su,(n) U,(su(n)) q-algebra, corresponding to a one-parameter deformation 
of the universal enveloping al ebra of su( n), is defined as the associative algebra 
over C generated by I, H i ,  $, i = 1 ,2 , .  . . , n - 1, and the commutation relations 

[ H i ,  H,] = 0 

[H;,X?] = * a i j $  

(2 . la)  

( 2 3 )  

(2.lc) 

together with the quadratic and cubic q-Serre relations given by 

[X',X?] = 0 j # i * l  l < i , j < n - l  (2.2) 

and 

(X$X? -[2]X'XfX'+x;(x') 2 = o  j = i f  1 1 < i , j  < 12- 1 

(2.3) 

respectively (Jimbo 1985a). 
associated with the classical simple Lie algebra An-,,  i.e. 

In (2.lb), ai, is an element of the Cartan matrix 

j = i A l  

otherwise. 

In (2.3), [2] denotes a q-number, whose general definition is 

In (2.lc), this definition of q-numbers is extended to the commuting operators H i .  

propenies 
Finally, the definition of the algebra k compieted by assuming the Hermiticity 

( H i ) +  = H i  (X')' = X? (2.6) 
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generalizing those of su( R ) .  Such properties are consistent with (2.1)-(2.3) provided 
q is either a real number or a phase. Throughout this paper, we shall assume that 
q E Elt; the su(n) limit will correspond to q - 1. The results presented here could 
be easily extended to the case where q is a phase different from a root of unity. 

The q-algebra su,(n) has the structure of a Hopf algebra, admitting a co- 
product A, a co-unit E and an antipode S, which are defined for the generators 

A ( H i ) = H i @ Z + + @ H i '  A ( X i ) -  * - X i  @ qH,l4 + q-*- l4 @ X i  (2.7a) 

€ ( H i )  = E ( X ? )  = 0 (2.76) 

S ( H i )  = - H i  S ( X i )  = -q*'/'Xf. (2.7~) 

Both A and c are algebra homomorphisms, whereas S is an anti-algebra and an 
anti-coalgebra map. 

The q-algebra U,(.) is t h e  algebra defined by the su,(n) generators plus an 
additional generator H ,  commuting with all other generators. For H,, the Hopf 
algebra and Hermiticity operations are the same as those for H i ,  i = 1 , .  . . , n - 1. 

The set of operators H i ,  XF is the q-analogue of the Cartan-Chevalley basis 
of su(n), where the H i  are the generators of the Cartan subalgebra and the X i  
correspond to the roots fai ,  ai being the simple roots. However economical it may 
be, this choice of generators is not the most practical. It is indeed more interesting to 
use the Cartan-Weyl basis, whose n2-1 generators will be denoted by Eii - Eitl,itl, 
1 < i < n -  1, and E i j ,  1 < i # j  < n -  1. 

The correspondence between these operators and the 3( n - 1)  Cartan-Chevalley 
generators is 

H .  = E.. t l  - E .  i + l , i t I  

bY 

x: = E-  x; = i = 1 , .  . . , n  - 1 .  2 , L t l  

(2.8) 

We define the additional generators of the Cartan-Weyl basis recursively by 

E i , i t p  E [Ei,itl, E i + l , i t p l s  Ei+p,i E [ E i + p , i + l ,  Ei+13ilp-, 

p = 2 ,  ..., n - i  
(2.9) 

i = l ,  ..., n - 2  

in terms of q-commutators of the type 

[ A ,  B],. A B  - qa"BA. (2.10) 

The cubic q-Serre relations (2.3) can now be expressed in the form of q-commutators 
as 

[Ei.i+l$ Ei,it219-i = [Eitl,itZ, E . .  z , t t 2  ] , = 0  

[ ~ i + Z , i > E i t I , i l ,  = [Eit2.i'Eit2.i+l19-> = 0. 

(2.11a) 

(2.11b) 

Equation (2.9) is not the only possible definition for the additional generators, and 
alternative definitions can actually be found in the literature. The Casimir operators 
to be considered in section 5 will be expressed in terms not only of the operators 
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(2.9), but also Of operators differing from the latter by the substitution of q-’ for q. 
Both types of operators can be defined by 

i = l ,  . . . ,  n - 2  p = 2 ,  ..., n - i  

so that the generators (2.9) reduce tn 

In the U,(”) case, the Cartan-Weyl basis, whose n2 generators are Eij, 
i, j = 1 , .  . . , n, is obtained by setting 

n 

H ,  = E;; 
i = l  

(2.14) 

in addition to (2.8) and (2.9). The Hermiticity properties (2.6) then imply that 

(2.150) 

(E?))’ ‘ I  = E j f )  j # i , i  f 1 .  (2.156) 

In the present paper, we shall deal with the su,(3) generators HI, H 2 ,  EiI, 
i # j, i ,  j = 1, 2, 3. Since we shall also use u,(Z) and u,(6), to distinguish their 
generators from those of suq(3) we shall denote them by E “ ,  s, t = 1, 2, and E,,, 
p, v = 1 , .  . . ,6, respectively. In the next section, we shall proceed to realize these 
three q-algebras in terms of q-boson operators. 

( E . . )  t = E t i  j = i , i * l  
11 

3. q-boson realization of u,(6), su,(3) and U,@) 

The q-algebra w,(m) 3 U,(w(m)) (Hayashi 19!N), which is the q-analogue of 
the Heisenberg-Weyl algebra w(m), is defined as the associative algebra over C 
generated by I, N,, v,, e,, p = 1,. . . , m, and the relations 

[N,,v,I = 6,”% [N, ,L1 = - 6 , A  ( 3 . 1 ~ )  

[v,,v”l = [t,>t”] = o  (3.lb) 

[c, 3 ?,I = 0 ( P  # v )  (3 .1~)  

[t,,v,], = q - ” / 2  [ep,v,Iq-, = q N p l 2 .  (3.ld) 

Instead of (3.ld), we may alternatively consider the relations 

&vp = !NU + ‘I v,& = !NJ  (3.2) 

where the q-number notation of (2.5) has been used. We assume that the q-number 
operators N ,  are Hermitian, and that the q-creation operators 7, are the Hermitian 
conjugates of the corresponding q-annihilation operators e,. 
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The operators N,,  q,, F ,  act in a q-Fock space, spanned by the states 

where 10) is the q-boson vacuum state defined by 

[,IO) = N,10) = 0 /I = 1 , .  . . , m . (3.4) 

[n,]! E [n,] [n, - 11 . . .[l] is a q-factorial (with [O]! 
where n,, E W. The action of the operators on the basis states is given by 

N,I~) = n,,~n) 

l), and n = (n l , .  . . , n m )  

112 v,,I~) = in, + 11 ~ n +  e,)  e,~n) = [n ,~ ' '~  ~n - e,)  
(3.5) 

where e,, is a row vector of dimension m with vanishing entries everywhere except 
for the p component that has a value of unity. 

In the q-Bargmann representation (Kulish and Damaskinsky 1990, Gray and 
N ~ l s ~ i i  IWG, Qiiisiii IWI), i h i  q-bo~oii States aiid ihe q-bi~oii GpeiriOij aie iealized 
by 

The q-creation operators q, effect multiplication by the complex variables z,, 
n..U1 Y-LIY.,,V1. Y,,u,aLV.a N, mea~iiie :he degree i:: i, as i:. :he Baigmann 
representation of boson operators (Bargmann 1961). However the q-annihilation 
operators .$, are now represented by the q-differentiation operators D, E LIZ*, 
defined by 

x x r h i l n  thn "~n-mmhnr nnnrq+nrr 

(3.7) 

Some properties of these finite-difference. operators to be used in the following 
sections have been reviewed by Gray and Nelson (1990). 

The Cartan-Chevalley generators of u,(n) can be realized in terms of the 
generators of w,(m) with m = n (Hayashi 1990). In particular, for u,(6) we 
obtain 

E,, = N ,  P = l , . .  . , 6  (3.80) 

L L + l  = V P F P + l  E,+,,, = 7l,+,c, P = 1,. . . ,S. (3.86) 
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By using (2.9) and (3.1), the remaining generators of the u,(6) Cartan-Weyl basis 
can be expressed as 

% L t P &  
- ( N s + i t . . . + N ~ + p - ~  ) /2  = q(Nr+i+.-tNe+r-t)/2 

%k+P = Q %E,+, ~ P t P , ,  

p = l ,  ..., 4 p=2, ..., 6 - p .  (3.9) 

In this realization, the u,(6) unitary irreps are characterized by a single-row Young 
diagram [hO ... 01, where h E N, and their highest-weight state Ih) satisfies the 
equations 

(3.10~) 

(3.1Ob) 

'RI obtain realizations of su,(3) and u,(2), let us now replace the single index p 
by a pair of indices i, s, where i and s run over 1, 2, 3, and 1, 2, respectively, and 
their values are enumerated in lexical order, i.e. 

p - i s :  1-11 2-12 3-21  4-22 5 3 3 1  6-32, (3.11) 

Then E,,, N,, 7,. e,, z,,, a,, and D, become E$, N;, TJ;, e;, z,", a;, and D:, 
respectively. 

For each s value, we can obtain a realization of su,(3) in terms of N,", 7:. e:, 
i = 1, 2, 3, of the same type as that given above for u,(6). By using the co-product 
(2.7n), the two independent realizations of su,(3), corresponding to s = 1 and 
s = 2 respectively, can be combined to give the following su,(3) Cartan-Chevalley 
generators: 

Hi = E;; - Eitl,itl = N! + NZ - N:tl - N:tl (3.12~) 

Ei,i+l = ,I!c!tlq(N:-N:+')14 8 8 + q-(N!-N!+l)/47;y+, (3.1%) 

E i t l , i  = oit1E;s 1 1 (N:-N?+1)/4 + q-(N!-N!+1)/47i+l~t (3.12) 

where, for simplicity's sake, we have dropped the tensor product symbol @. By 
using (2.9) and (3.1). the two additional generators of the Cartan-Weyl basis can be 
expressed as 

(t) - -Ni l2  I 1 (N:-N:)/4+ q-(N,'-N:)/4q-N:/2 2 2 = - 4 7163 

(3.13a) 314 -(N:-N:)/4 1 1 (N:-N:)/4 2 2 
+ ( C 1 f 4 - 4  ) 4  71E2Q 7253 

N$/2 1 1 (N:-N:)/4 + ¶-(N/-N;)/4 Nil2 2 2 GI =E31 - 9  7 3 c I q  4 1)3<1 
(-1 - 

+ (41/4 - 4 -3/4lq-(N:-N;)/4 73c2q 1 1 (N:-N:)/4 7 2 E 1 .  2 2 (3.13b) 

Note that, for i # j, one simply goes from Eij to Eji by permuting the indices is 
with js for s = 1, 2, and by changing q into q-'. A similar calculation shows that 
E ( - )  and El:) can be obtained from E!;) and E:;), respectively, by permuting the 
indices il with i2 for i = 1, 2, 3, and by changing q into q-'. 

'3. 
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In the same way, for each i value, we can define a realization of u,(Z) in terms 
of N ;  , qf , (1, s = I, 2, then combine the three independent realizations so obtained 
by using the co-product (2.7~) to get the following u,(2) generators: 

E'' = N ;  + N i  + Nf (3.14~) 

8 i (N:-N;tN:-N:)/4 + q-(N/-N:)/4 a i (N:-N:)/4 E" = 111 F14 7 l2FzQ 

I I Y  ,-(N:-N?tNi-N:)/4,s ' I 3  '13 c l  (-a+\ \ "  t L J '  (3.?dh) 

It is easily shown that: 

Lemma 1. The su,(3) and u,(Z) q-algebras, whose Cartan-Chevalley generators are 
given in (3.12) and (3.14) respectively, are subalgebras of the u,(6) q-algebra defined 
in (3.8). 

Proof. The operators (3.12) and (3.14) can be expressed in terms of the Cartan-Weyl 
generators of u,(6) as 

and 

E 3 9  = E;; .+ E;; + E;; 

E s t  = IE,, si q (E$U%tD%-Eg)/4 + *-("::-E::)/~E;:~(E::-~~)/~ (3.16) 

.+ q-(E:l - E E t E g - e ) / 4 q ;  (3 it t ) .  0 

In the limit q i 1, the operators (3.15) and (3.16) become su(3) and u(2) 
generators, given by 

Hi = E (E:; - IE:;l,itl) E. .  ' I  = EIE:; (if :  j) (3.17) 

and 

E"' = CEif 
i 

(3.18) 

respectively. Since the latter commute with one another, they provide a realization of 
the direct sum of Lie algebras su(3) @ u(2), embedded into the larger algebra 4 6 )  
generated by E:;. 

To determine what is the q-analogue of this property, it is useful to establish the 
following result: 

Lemma 2. The Cartan-Chevalley generators (3.12) and (3.14) of su,(3) and u,(2) 
commute with one another. 
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ProoJ Consider for instance the commutator of &I2 and El? From (3.15) and 
(3.16), it can be written as 

( 3 ~ ~ : : + ~ : - 2 ~ ’ + E ~ ~ - n + 3 ) / 4  ~ 1 2  ~ 1 1  

+ , - ( ~ l - 4 4 + ~ ~ - e : t & ~ - 1 ) / 4  [EIZ 

+ q- ( ~ : - 4 ~ ~ + ~ - ~ : : + ~ ~ ~ + 1 ) / 4  [@;, ~ i ; ] ~  
+ , - (ZE~{-&~-3@-e;11:+~~t3 ) /4  [ ~ 1 2  ~ 2 2  

[C”, E121 = [ 11, 12Iq-l  

11, GI , - I  

22, 121, 

(3.19) 

On the right-hand side of (3.19), the first and fourth q-commutators vanish due to 
the cubic q-Serre relations (2.110) and the correspondence (3.11); the same is true for 
the two commutators as a cansequence of the quadratic q-Serre relations (2.2) and 
the definition (2.9). From (3.1), (3.8) and (3.9), the second and third q-commutators 
become 

[E ;xz Iq -8  = [7tf:.¶ - N i l 2  7 1 t 2 I q - ,  2 2 = 4 ( N : - N ; ) / Z 7 ; ~ ;  = q E : : ~ i :  (3.2Oa) 

[E;;J;;I, = [7:1;,Q -N; /Z  7 , 1 2 1 ,  1 1 = -4  - ( N ; - N ; - I ) / z  7112 I 2 = -q (E2C1/Z)Ei: .(3.20b) 

Hence the right-hand side of (3.19) is equal to zero. 
The vanishing of the remaining commutators can be proved in the same 

way. 0 

~~~ Remark. The operators (3.15) and (3.16) do not commute with one another for 
any realization of u,(6). The demonstration of Lemma 2 indeed depends in an 
essential way on the q-boson realization (3.8), since the relation between [Eif,Eig]!-l 
and [Elz,IE;;], that follows from (3.20) cannot be derived from the uq(6) defining 
equations with the help of the qJacobi identity. This result contrasts with the q + 1 
limit, wherein the commuting property of the su(3) and u(2) generators (3.17) and 
(3.18) is independent of the realization chosen for the u(6) generators. 

Since in the q-algebra case, we cannot consider a direct sum of algebras because 
su,(3) and u,(2) have the unit operator in common, let us make the following 
definition: 

Definition. Let su,(3) + u,(2) = U,(su(3) !3 u(2)) denote the associative algebra 
over C generated by I, Hi, E,,,+!, E,,,,!, E’‘ ,  i, 3, 1 = 1, 2, where Hi, E,,,+!,  
Ei+l,i ,  and bS‘ satisfy the defining relations of su,(3) and u,(2) respectively, and 
commute with one another. 

The results obtained in the present section can be summed up in the form of a 
theorem. 

Theorem 1. The operators (3.8), (3.12) and (3.14) provide a realization of the q- 
algebra chain 

~ ~ ( 6 )  3 Su,(3) + Uq(2). (3.21) 
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4. Complementarity of suq(3) and uq(2) 

In the present section, we consider the polynomials in the q-creation operators P(q: )  
that satisfy the equations 

&"P(q,d)lO) = h,P(qf)lO) CZ2P(ql)lO) = h,P(qI)IO) (4.1~~) 
&'2P(qf)lO) = 0 (4.lb) 

and 

where h,, h,, k, ,  k, E W and h, 2 h,. The corresponding q-boson states P(v,d)lO) 
are then simultaneously highest-weight states of u,(2) and su,(3) irreps characterized 
by Young patterns [h ,h , ]  and [ k ,  + k,,k,,O] = ( k 1 k 2 ) .  'Ib keep the notations 
as simple as possible, we have dropped the indices h,,  h,, k,, k,, a that should 
be appended to the symbol P in (4.1) and (4.2) (with oi distinguishing between 
independent solutions corresponding to the same values of h,, h,, k,, h,). 

We start by solving the system of equations (4.1). The results can be stated in the 
form of a lemma. In the latter, use is made of q-binomial coefficients, defined by 

O < k g m  Iml! ['I E { [ k ] !  [m - k ] !  

0 k < O  or k > m  
(4.3) 

Lemma 3. The simultaneous solutions of (4.1) can be written as 

p($)lO) = A ! " d b ) ( ~ ~ ) h i - c ( v : ) e - d ( q : ) d ( v : ) h 2 - o - l + c  (11,) 2 o - c + d  (s:)b-dlo) (4.4) 
a b c d  

where the summations over a, b, c, d run over those non-negative integers such that 
h , < a + b < h l + h 2 , a + b - h ,  < c<min(a+b ,h , ) ,max(O,c -a )  $d(min(b ,c ) .  
For given ( a b ) ,  all the coefficients A T )  corresponding to different c, d values can 
be expressed in terms of those associated with the minimal c value as follows: 

A!;)) = ( _ l ) h ~ - a - b t e q ( - ( h i - h ~ t b + 2 ) ( h z - a - b t e ) t ( Z h l - o - ( ) d ) / 4  

For h, < a + b 6 h,, the latter are  linearly independent, whereas for h ,  < a + b < 
h, + h, they satisfy the relations 

(4.6) 
h , - b + t  a b )  = o  

A h t b - h 2 , 1  1 
m i n ( b , n + b - h l )  

t=mar(U,b- A t )  

where d runs over all the integers such that max(0, h ,  - a  + 1) < d < min( b, h, + 1). 
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ProoJ In this proof as in the following ones, it is advantageous to use the 4- 
Bargmann representation of q-boson operators so that all operations reduce to q- 
differentiations. 

From (3.14a) and (3.6d), it is obvious that the simultaneous solutions of the 
system ( 4 . 1 ~ )  can be written in the form (4.4), where the coefficients A S )  are 
defined as vanishing whenever the inequalities a 2 0, b 2 0, a + b < h, + h,, 
max(0,a + b -  h,) Q c < min(h,,a + b), max(0,c- a )  Q d < min(b,c) are not 
fulfilled, but are othewise arbitrary. 

Introducing now (4.4) into (4.16) and taking (3.146) and (3.65,c,d) into account 
lead to the following recursion relation for the coefficients A?) with fixed (ab) 
satisfying the conditions a 2 0, b 2 0, a + b < h, + h,: 

q(Ze-a-b)/4 [h, - a - b + CIA,, ( ab )  + q - ( h ~ - h z + o + 2 b - - Z c - 2 d + 2 ) / 4  - + d +  l]Ac-,,, ( a b )  

+ q - ( h ~ - h z + b - Z d + Z ) / 4  [b-  d +  l]Ay,),- ,  = 0 .  (4.7) 

In (4.7), c varies in the range max(0,a + b - h, + 1) Q c < min(h, + 1, a + b). 
Hence we have to distinguish the following cases: 

I. O Q a + b < h ,  O < c Q a + b  

11. h, < a +  b <  h ,  a + b - h , +  1 < e <  a +  b (4.8) 

111. 

together with max(0,c - a )  < d Q min(b, e ) .  
In case I, for c = d = 0 equation (4.7) gives Agb) = 0. Then by induction over 

c, one obtains A Y )  = 0 for any allowed values of c and d. 
In case 11, the solution of (4.7) is given by ( 4 . 9 ,  where the coefficients AC:i-hz,t 

remain undetermined because there is no equation (4.7) for c = a + b- h,. Equation 
(4.5) indeed reduces to an identity for c = a + b-  h, and can be proved by induction 
over c in the range a + b - h, + 1 < c < a + b by using the definition (4.3) of 
q-binomial coefficients and some elementaly properties of q-numbers. 

The treatment of case 111 is similar to that of case I1 for a + b- h, + 1 6 c < h,, 
but there is now an extra condition coming from (4.7) for c = h ,  + 1. It amounts to 
setting the right-hand side of (4.5) equal to zero for this c value, thereby leading to 

h, < a +  b < h, + h, a+ b -  h 2 +  1 < c < h, + 1 

(4.6). U 

illn ..,..., tmbn oA..antnna ,.< Inmmo 2 tn find tho r;mnltnnannnr E n l i i t i n n c  nf ( A  1 )  ..c 1,"W L a h r  a""a.,,ap "1 ,I I,.. 1," .I L" a.. 1" L.... I..,,".."..-"".. ..".".."..I "L \-.A, 

and (4.2). In the following lemma, we make use of the q-binomial formula (Gasper 
and Rahman 1990) 

(4.9) 

The q-binomial satisfies the following properties: 

(I; !/): = 1 (4.10) 



(4.11) 

(4.12) (.;Y)y = ( G P  y)q (z; qr(m-""2y); n = O, l , .  . . , m  

D,(~;Y) ,"  = [ml(z;y),"-' (4.13) 

where in (4.12) one takes either the upper or the lower signs. As clearly seen from 
(4.11). it is not a function of z + y contrary to the standard binomial. This is why 
(z;,y)r is used instead of the notation ( z +  y)? that can be found in some previous 
articles (e.g. Ruegg 1990). 

Lemmo 4. Equations (4.1) and (4.2) have a simultaneous solution if and only if 

in/, m-n 

IC, = h ,  - h, IC, = h,. (4.14) 

This solution is unique up to a multiplicative factor and given by 

p h i h l ( l l ; ) l o )  = ( 1 1 : ) h ' - h z ( l l : l l : ; - q - ( h i - h 2 + 2 ) / 4  llzvd, 1 2 h2 10). (4.15) 

Proof. By using the q-Bargmann representation (3.6) as well as properties (4.9) and 
(4.13), it is straightfonvard to  show that when (4.14) is fulfilled, the q-boson state 
(4.15) satisfies both (4.1) and (4.2). 

The second part of the proof is more involved. Let us first determine the extra 
conditions to be fulfilled by A Y )  so that the q-boson states defined in (4.4) are also 
solutions of (4.2). Equation (4.2a) leads to the relations 

A y )  = 0 if h, + h, - 2a - b # k,  or a - b # k,. (4.16) 

Hence the summations over a, b disappear as these parameters are given by 

a = f (  h1 + h, - k1 + IC,) b = i ( h l  + h, - IC, -2k2) .  (4.17) 

Moreover, (4.26) imposes that the following recursion relations be satisfied by AT): 
q ( h i + h ~ - Z a - b + 2 1 / 4  [ c  - d + I ] A p ) , ) d  + [a - c + d]A!",) = 0 

,$a-b+2) /4  [ d  + l]A~'$~, + [b-  d]A$*) = 0 

(4.18) 

(4.19) 

where c and d vary in the ranges a + b - h, - 1 < c < min(h,,a + b), 
max(0,c - a 3- 1) < d < min(b,c), and a + b - h, < c Q min(h,, a + b), 
max(0, c - a - 1) < d Q min( b - 1 ,  c), respectively. 

Considering successively (4.19) for d = c - Q - 1 ,  c - Q, . . . , min(b - 1 ,  c ) ,  and 
any c in the range a < c Q min(hl, a + b)  shows that the coefficients A Y )  vanish 
whenever the conditions 0 < b < h,, a + b - h, < c Q a, 0 < d < min(b, c) are not 
fulfilled. Equation (4.18) for c = a ,  a - 1 , .  . . , a  + b - h,, and any d in the range 
1 < d < min(b, c ) ,  then indicates that the only surviving coefficients correspond to 
0 < b < h,, Q + b - h, Q c < a ,  and d = 0. Considering (4.19) again for 0 < b < h,, 
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a + b - h, < c < a ,  and d = 0, only leaves the coefficients A!';'), which by iterating 
(4.18) can be expressed in terms of A%) as follows: 

It is easily checked that (4.18) and (4.19) do not impose any further restriction on 

It now only remains to combine (4.20) with conditions (4.9, (4.6) and (4.17). For 
AS"). 

b = d = 0, (4.5) becomes 

Introducing (4.21) and a similar result for A Y )  into (4.20) leads to 

Hence a = h,, and the only non-vanishing coefficients are 

Equation (4.6) is then automatically satisfied, while (4.17) directly leads to (4.14). 
By inserting (4.23) into (4.4) and taking (4.9) into account, one finally obtains the 

0 

h,, the 
results obtained in the present section can be summed up in the form of a theorem. 

Theorem 2. For the q-algebras considered in theorem 1, the  reduction of a u,(6) 
irrep [hO.. . O ]  into a sum of su,(3) + u,(2) irreps is given by 

solution (4.15), whose uniqueness has thus been proved. 

Shce (4.1) and (4.2) have a solution for any h,, h, E W, such that h, 

(4.24) 

5. Casimir operators of suq(3) and U,@) 

As a consequence of the complementarity between su(3) and u(2) within single- 
row irreps of u(6), the boson realizations of their Casimir operators are functionally 
dependent on one another. In the present section we show that this property can be 
extended to the q-boson realizations of the corresponding q-algebras. 

The Casimir operators of q-algebras, in particular those of su,(n), have been 
the subject of various recent studies (Pasquier and Saleur 1990, Chakrabarti 1991, 
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Rodriguez-Plaza 1991, Zhangeral 1991, Gould elal  1991, Bincer 1991). Here we shall 
follow the approach of Rodriguez-Plaza (1991), based upon a theorem of Rddeev 
et a1 (1988). In the latter, the generators Z,, IC = 0,1,. . . , n - 1, of the centre 
of su,(n) are constructed in terms of the universal R-matrix and the fundamental 
representation of this q-algebra. The n - 1 independent Casimir operators of su (n) 
are then defined as those linear combinations of the 2,'s that approach the Cahnir  
operators of su(n)  in the limit q -+ 1. 

In the notations used in the present paper, the two generators of the centre of 
su,(2) can be written as 

(5.10) 

(5.ibj 

From them, we find the single Casimir operator 

C2, = z, - 2" = E12P  + [ f  (E" - P)] [f (E" - E22)  - 11 
= . P E 1 2  + [ f (E" - E271 [ f (E" - P) + 11 (5.2) 

whose limit when q - 1 is the usual su(2) quadratic Casimir operator 

(5.3) 

where 

(5.4) 2'' = &s' - f6"' X E Y U ,  

" 

Since we deal here with u,(2) instead of su,(2), we have to supplement CZ9 with the 
q-analogue of the u(2) linear Casimir operator C, = C,Css, namely 

c,, = [E" + E221 . (5.5) 

In the su,(3) case, the centre of the q-algebra is generated by the operators 
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Theorem 3. When the su,(3) and u,(2) generators are realized by (3.12) and (3.14) 
respectively, the corresponding Casimir operators satisfy the equations 

c2, = (q(N+’) /6 + q- (N+3)/6)CZ9 + [ f ( N + 3 ) ] ’ +  [ ~ ( N + 6 ) ] 2 + [ ~ N ] Z - 2  
(5.11a) 

C3, =2[ f (N+3) ]{C~ ,  - [ a (N+6) ] [aN]}  (5.11b) 

where N is related to C,, by 

c,, = [NI. (5.12) 

Proof. Direct verification using the commutation relations (3.1). 0 

Remark. Theorem 3 can be checked by comparing the eigenvalues of the su,(3) 
Casimir operators corresponding to an irrep (h,  - h,, h 2 )  = [h,h,O] 

6. q-boson realization of the su,(3) Gel’fand-Tseitlin basis states 

The purpose of the present section is to build the GT orthonormal basis for an su,(3) 
irrep (h ,  - h,, h,), in the realization where its highest-weight state is the q-boson 
state (4.15). The basis vectors 

are specified by definite irreps [pIp2] and [ T ]  of the u,(2) and u,(l) q-subalgebras 
of su,(3), spanned by I, HI + €I, ,  H,, E,,, E,,, and I, HI + H,,  respectively. With 
respect to the u,(2) q-algebra complementary to su,(3), all of them are highest- 
weight states of irreps characterized by the same Young diagram [hlh2]. 

According to U n o  el a/ (1989). the GT vectors (6.1) can be constructed in two 
steps from the normalized highest-weight state 

h, h, 0 
(6.2) 
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by using lowering operators for u9(3) and u,(2), whose explicit form is given by 
(Quesne 1992) 

and 

(6.4) L i  = E2, 

respectively. First, one determines from Ih,h,) the semi-maximal states, i.e. those 
states of highest weight in the u,(2) q-subalgebra of su,(3), 

where the normalization factor is given by (Ueno el al 1989, Quesne 1992) 

Second, one obtains the general basis states (6.1) from the semi-maximal ones by 
using the relation 

where 

To apply this procedure, we need the explicit form of the normalized highest- 
weight state (6.2). It is given in the following lemma: 

Lemma 5. The q-boson state 

Ih,h,) = A h 1 h z P h l h 2 ( ~ i ) ) 0 )  

where Phlhz(r$) is defined in (4.15), and Ahlh' by 

is the normalized highest-weight state of an su9(3) irrep ( h ,  - h,, h2) .  
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Proof. In the corresponding boson case, the normalization coefficient Ahlhz is 
calculated by making use of some properties that have to do with the differentiation 
of a determinant, more specifically with the effect of the Cayley operator upon the 
mth power of its determinant ( T " l 1  1960). In the case of a 2 x 2 determinant, 
the latter is given hy 

The q-analogue of this relation results from (4.12) and (4.13) and can be written as 

(D:D: - q("-m-"/2D:D:)(z:z:;  -q-m/2z:z:)y 

=q-1/2[m][m+l](z:z:;-q f 2 Z J q  LYEIW. (6.12) 

The q-Bargmann representation, as well as (4.12) and (6.12), lead to the recursion 

-(.+i)/z I z m-1 

relation 

(Ahjhz)2 = q1/2([h, + 1][h2])-1(Ah~-11hz-l ) (6.13) 

from which (Ahlh2)' can be expressed in terms of (Ahl-h2jU)2, given by (3.3). The 
final result is (6.10). 0 

It is now straightfolward to obtain the explicit form of the GT vectors. 

Lemma 6. The semi-maximal and general GT basis states of the suq(3) irrep 
(h, - h,, h2), whose highest-weight state is given in (6.9). can be written as 

- 
PIP2 phlhz(qf) lO)  P I P 2  (6.14) 

(6.15) 
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and 

A h i h z  = ( h * + ( h i - P i ) ( h z - P 1 ) ) / 4 ~ h i h i  (6.1&1) 
P l P l  P I P 2  

Proof. The demonstration is based upon (6.3)-(6.10) as well as the relations 

which can be proved by induction over h,  - pl,  h, - p2, and p, - r, respectively. In 
the final step of the demonstration of (6.17) and (6.19), use is made of the identity 

(6.23) 

leading to the relation 

valid for any m E N, a, p E R, and either the upper or the lower sign choice. 0 
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Remark. (1) In (6.17) and (6.22). the range of the summation indices p and 
m is restricted by the definition (4.3) of q-binomial coefficients, i.e. 0 < p < 
min(h, - p z , p l  - r) and max(O,h, - v )  < m 6 min(h, - p z , p l  - r). (2) In the 
q - 1 limit, the results contained in (6.15), (6.17), and (6.19), go over, as they must, 
into the corresponding su(3) results given, for instance, in equations (A2) and (A3) 
of Moshinsky and Chac6n (1968). 

The GT vectors given in lemma 6 are written in terms of monomials in q!, and 
of q-binomials depending on tensor products of two q-boson creation operators and 
on the deformation parameter q raised to a power that varies with the state (and the 
term) considered. It is useful to express the vectors in an alternative form wherein 
the building blocks are independent of the state considered and, at the same time, 
the q-binomials are replaced by ordinaly binomials. 

This is possible by introducing an explicit dependence upon the number operators 
N,?, as shown in the following lemma: 

Lemma 7. The relation 
m 

(q(N!tN:t1)/40:0~ - q-(N:tN~+l)/4 .;VI) 1 2 10) = q"/4(0:0:;-n - 1 / 2  ? l i D l ) ,  1 2 m 10) 

(6.25) 

is valid for i = 2, 3 and any m E W. 

Proof. Equation (6.25) can be demonstrated by induction over m starting from 

With the help of this lemma, it is easy to arrive at the searched-for expressions 

m = 1 and using (4.12). 

of the GT vectors, given in the following theorem: 

Theorem 4. The maximal, semi-maximal, and general Gel'fand-?Seitlin basis states 
corresponding to an su,(3) irrep ( h ,  - h,, h Z ) ,  and given in lemmas 5 and 6, can be 
rewritten as 

(6.26) 12 hz 1 hi-hz 
Ihlh,) = Bhlh"O,z) (01) 10) 

(6.27) 

where 

12 - (N!+N:t1)/4 - q-(N:tN:tl)/4 qiql  1 2 i = 1 , 2  (6.29) - P 
-12 013 - - 4 (N:tN:t1) /40~0~ - q-(Nt't2N:tN:t11/4 q301 1 2 (6.30) 

and the order of the non-mutually commuting operators on the right-hand side of the 
relations does matter. 
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Proof. The q-binomial depending upon qiqz and d q ?  is first commuted to the right 
and replaced by a number-dependent ordinary binomial with the help of lemma 7. 
The latter binomial is then commuted to the left. This procedure leads to (6.26). In 
the cases of (6.27) and (6.28), it only remains to perform the same transformation on 

0 

Remark. (1) Although the operators q: commute amongst themselves, they do not 
commute with qi;, qi;, $:, nor do the latter commute with one another. As already 
noted by Biedenharn and Lohe (1991a,b) in the u,(2) case, only monomials such 
as q(N:+N:+')14 qiqf  and q-(N:+N:+')14 q!q; have simple commutation properties 
amongst themselves and with q:. (2) The commutation properties of the operators 
(6.29) and (6.30) with the suq(3)  and U,(?,) generators are also quite complicated. 
Such intricacies are related to the problem of constructing irreducible tensors with 
respect to suq(3) (Rittenberg and Scheunert 1992), to which we hope to come back 
in a forthcoming publication. 

the second q-binomial depending upon q;qi and qiqi. 
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