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Complementarity of su,(3) and u,(2) and g-boson realization
of the su,(3) irreducible representations
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Campus de la Plaine CP229, Bd. du Triomphe, B1050 Bruxelles, Belgium

Received 24 December 1991, in final form 24 July 1992

Abstract. The complementarity relationship (also termed duality) that arses between
the irreps of the su(3) and u(2) Lie algebras when their direct sum su(3} & u(2) is
embedded into a larger u{6) algebra and single-row irreps of the latter are considered
is extended to the corresponding g-algebras sug(3) and ug(2). It is demonstrated by
explicitly constructing the unique g-boson state that is simultaneously maximal in sug(3)
and ug(2) for a given ug (2) weight. In addition, the relations between the sug(3)
and ug(2) Casimir operators resulting from their complementarity are explicitly found.
Together with the ¢g-Bargmann representation of g-boson operators, the complementarity
relationship is then used to construct a Gel'fand-Tseitlin basis for arbitrary suq(3) irreps
in terms of ¢-boson operators.

1. Introduction

In recent years, a great deal of activity has been directed towards the exploration
of quantized universal enveloping algebras, also called g-algebras or quantum groups
(Jimbo 1985a, Drinfeld 1986). These new mathematical objects were developed in the
theory of quantum integrable systems, where the Yang-Baxter equation plays a crucial
role. Their relation to non-commutative geometry and the theory of knots and links
has also attracted great interest. In physics, they have made their appearance in many
fields, such as statistical mechanics, conformal field theory, quantum optics, molecular,
atomic and nuclear spectroscopy (for reviews and references see e.g. Majid 1990,
Zachos 1991).

In order to apply ¢-algebras in physics, one needs a well developed theory of their
representations. Hopefully, the latter bears much similarity to that of ordinary Lie
algebras. In particular, whenever ¢ is not a root of urity, for any finite-dimensional
irreducible representation (irrep) of a given simple Lie algebra, there is an irrep of the
corresponding g-algebra that has the same dimension and the same weight spectrum,
and so can be uniquely labelled by its highest weight (Lusztig 1988, Rosso 1988). For
u,(n), for instance, one can associate a unitary irrep with any n-row Young diagram.

The analogies between Lie algebras and g-algebras can also be extended to some
subalgebra chains, such as u(n) O u(n —1} and u,(n) D u,(n — 1), which admit
the same branching rule (Jimbo 1985b, Ueno et o/ 1989). Both of these chains are
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canonical, which means that any irrep of u(n—1) (resp. u,(n— 1)) is contained in any
irrep of u(n) (resp. u,(n)) with a multiplicity at most equal to 1. Hence, as in the Lie
algebraic case, the 1rreps of the g-subalgebras u (n - 1) Du,(n~2) D .- D uy (1)
may serve to completely specify for any unitary 1rrep of uq(n) an orthonormal ba31s
the so-called Gel'fand-Tseitlin (GT) basis (Gel'fand and Tseitlin 1950). The latter may
be constructed by means of lowering operators acting on its highest-weight vector
(Ueno et af 1989, Quesne 1992},

The purpose of the present paper is to explore the extension to g-algebras of a
special type of relationship, termed either complementarity (Moshinsky and Quesne
1970) or duality (Howe 1979), that arises between the irreps of some Lie algebras
hy, h, when their direct sum h, & h, is embedded into a larger algebra g and
some special irreps of the latter are considered. The prototype of this relationship is
provided by the chain u(6) 3 su(3) @ u(2): in the decomposition of the u(6) single-
row irreps into direct sums of su(3) and u(2) irreps, the latter appear in a one-to-one
correspondence, associated irreps being characterized by the same two-row Young
diagram (Moshinsky 1962, 1963, Baird and Biedenharn 1963). In the present work,
the same branching rule will be shown to be valid for the corresponding g-algebra
chain u (6) O su (3) + v, (2)

To prove this result, it will be useful to realize the g-algebras u,(6), su,(3),
and u,(2) in terms of the g-boson operators that were independently introduced
by Biedenharn (1989) and Macfarlane (1989) to construct for su q(Z) a g-analogue
of the su(2) Schwinger realization (Schwinger 1965). Similar realizations were also
obtained for su,(n} (Sun and Fu 1989), and more generally for all classical g-algebras
(Hayashi 1990). In the case of su (n) with n > 2, they have been restricted so far to
single-row irreps by using only r. pairs of ¢-boson creation and annihilation operators.
Since, in the present work, we shall deal with two-row irreps of su,(3), to get an
appropriate realization we shall need 6 pairs of ¢g-boson operators and make explicit
use of the co-product of the su (3) co-algebra structure.

Using g-boson realizations of g-algebras allows us to replace complicated g-
commutation relations by g-differential calculus (Gasper and Rahman 1990). Such
a simplification is based wpon the g-analogue of the Bargmann representation
(Bargmann 1961) of boson operators (Kulish and Damaskinsky 1990, Gray and
Nelson 1990, Quesne 1991).

As a by-product of our demonstration procedure, we shall also obtain a concrete
realization in terms of g-boson operators of the su (3) GT basis, which was abstractly
constructed by Ueno et al (1989) (see also Smirnov et al 1991). Together with a
similar realization given for u,(2) by Biedenharn and Lohe (1991a, b), this paves
the way for expressing the GT basis of two-row u (n) irreps in terms of 2n pairs of
g-boson operators.

The realization of the GT basis presented here differs from that based upon a
recursive procedure, recently proposed for su,(2) by Quesne (1991), and for su,(3),
and more generally u (n), by Biedenharn and Lohe (1991a, b). According to the
latter, su (3) irrep GT basis vectors are obtained by su,(2) coupling a g-bosonic
reahzanon of an su _(2) irrep with an abstract vector in u (2 Ddu 4(1). This type of
approach extends to g-algebras the su(2) Dyson realization’ (Dyson 1956), generalized
to other Lie algebras via vector coherent state theory (Deenen and Quesne 1984,

t After submitting the presemt paper, the author received a preprint of Smimov and Tolstoy {1991),
wherein a similar result is established.
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Rowe 1984).

In the following section, we review the defining relations for su,(n) and u (n) and
apply them to u (6), su,(3), and u,(2). In section 3, we present q -boson reahzatlons
of the latter. In section 4, we demonstrate the complementarity between su,(3)
and u (2) by explicitly constructing the unique g-boson state that is sunu]taneously
maximal in su (3) and u,(2) for a given u (2) weight. In section 5, we find the
expressions of the su,(3) Casimir operators in terms of those of u,(2), resulting
from the complementanty of both g-algebras. Finally, in section 6, we ‘construct a GT
basis for the su,(3) irreps in terms of ¢-boson operators.

2. Defining relations for u,(6), su (3) and u,(2)

The su,(n) = U, (su(n)) g-algebra, corresponding to a one-parameter deformation
of the universal enveloping aliebra of su(n) is defined as the associative algebra
over C generated by I, H;, X,i=1,2,...,n —1, and the commutation relations

[H;, H;]=0 (2.1a)
[H;, XF] = ta,; X (2.1b)
B B qu S q—H./'Z
together with the quadratic and cubic g-Serre relations given by
£ oy - o .
(X7, X 1=0 jEi+l 1€t,7¢n~-1 (2.2)

and

(XE XF - 2XEXEXE+ XF(XF)' =0  j=i+l 1€i,j<n—1
@.3)

respectively (Jimbo 1985a). In (2.1b), a;; is an clement of the Cartan matrix

1y

associated with the classical simple Lic algebra A _,, ie.

2 j=1
0 otherwise.

In (2.3), [2] denotes a g-number, whose general definition is

n/2 q -nf2

[n]_ _qT/Z_—-IT = g(r=D/2 4 o(r=3)2 4 . g g~ (n-1/2 nez. (2.5)

In (2.1¢), this definition of g-numbers is extended to the commuting operators H,.
Finally, the definition of the algebra is completed by assuming the Hermiticity
propetties

(HY =1, (X})'=XF (2.6)
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generalizing those of su(n). Such properties are consistent with (2.1)-(2.3) provided
q is either a real number or a phase. Throughout this paper, we shall assume that
q € R*; the su(=) limit will correspond to ¢ — 1. The results presented here could
be easily extended to the case where g is a phase different from a root of unity.

The q-algebra su (n)} has the structure of a Hopf algebra, admitting a co-
product A, a co-unit £ and an antipode S, which are defined for the generators
by

AH)=H;oI+IoH,  AXH=XFfedli/ltyqgHligXxEt (27a)
e(H)=¢e(XE) =0 (2.7)
S(H)=-H;  S(XF)=-¢"XxF. (2.7¢)

Both A and ¢ are algebra homomorphisms, whereas S is an anti-algebra and an
anti-coalgebra map.

The g-algebra u (n) is the algebra defined by the su,(n) generators plus an
additional generator H, commuting with all other generators. For i, , the Hopf
algebra and Hermiticity operations are the same as those for H;, i =1,...,n— 1L

The set of operators H;,, XF is the g-analogue of the Cartan-Chevalley basis
of su{n), where the H, are the generators of the Cartan subalgebra and the XZ
correspond to the roots :ha,, a; being the simple roots. However economical it may
be, this choice of gencrators is not thc most practical. It is indeed more interesting to
use the Cartan—Weyl basis, whose n*—1 generators will be denoted by F;; - E; 3 ;115
1€ign—-1,and E,,1<z#g £n-1

The correspondence between these operators and the 3(n — 1) Cartan—Chevalley
generators is

H'1-=E,-,-—1‘E'i+1"—+l X;F=El-’i.|_1 X =Eia i=1,...,n—-1.
(2.8)
We define the additional generators of the Cartan—Weyl basis recursively by
Eiivp = [Eiiz1 Ein, 1+p] Eivpi = [Eippiyrs Ei+1.=’]q~
2.9
t=1,...,n =2 p=2,...,n—1
in terms of g-commutators of the type
[A, B],. = AB - ¢"/?BA. (2.10)

The cubic g-Serre relations (2.3) can now be expressed in the form of g-commutators
as

[Ei.i+l’ Ei,£+2]q-| = [Ei+1,|'+21 E,-_.-+2]q =0 (2.11a)
[Eiva,is Eiri), = [Bivgyio Bivaip] o0 = 0. (2.11b)
q q

Equation (2.9) is not the only possible definition for the additional generators, and
alternative definitions can actually be found in the literature. The Casimir operators
to be considered in section 5 will be expressed in terms not only of the operators
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(2.9), but also of operators differing from the latter by the substitution of ¢~* for g.
Both types of operators can be defined by

(£) — (£) (£) — [plE) o
Bt = [Eiivs Es+l,=+p] Efpi = [E"+p.i+1’ By g (2.12)
i=1,...,n—-2 p=2,...,n—1
so that the generators (2.9) reduce to
Es R Tt Et(-tlp Ei+P,i = EE;;)?J . (2.13)

In the u,(n) case, the Cartan-Weyl basis, whose n? generators are FE,
i, j =1,...,n, is obtained by setting

IJ’

H, =) E, (2.14)
i=1
in addition to (2.8) and (2.9). The Hermiticity properties (2.6) then imply that
(E;))'=E;  j=iitl (2.15a)
(ES' = B j#iixl. (2.15b)

In thc present paper, we shall deal with the su (3) generators H,, H,, E;;,
i# J,4 J=1,2, 3 Since we shall also use u .(2) and u,(6), to distinguish their
generators from those of su (3} we shall denote them by 5", s,t=12and E,,
#y v =1,...,6, respectively. In the next section, we shall proceed to realize these

three g-algebras in terms of g-boson operators.

3. g-boson realization of u,(6), su,(3) and u,(2)

The g-algebra w (m) = U, (w(m)) (Hayashi 1990), which is the g-analogue of
the Heisenberg-Weyl algebra w(m), is defined as the associative algebra over C

generated by I, N, n,, §,, # = 1,...,m, and the relations
[N,,n,] =6,.m, [N,.€6,] = =6,.€, (3.1a)
[nm] =[€,.6] =0 (3.16)
[€m] =0 (p#v) (3.1c)
[em], =a™?  [g,.m,] =™ (3.1d)

Instead of (3.1d), we may alternatively consider the relations
Sully = [N.u +1] Muby = [Ny] (3.2)

where the g-number notation of (2.5) has been used. We assume that the g-number
operators N, are Hermitian, and that the g-creation operators 77, are the Hermitian
conjugates of the corresponding g-annihilation operators £,.
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The operators N, n,, £, act in a g-Fock space, spanned by the states
m n
m) =] l’i)—,,—z 10) (3.3)
p=l1 (["u]')
where |0) is the g-boson vacuum state defined by
£,i00=N,[0)=0 p=1,...,m. (3.4)

]t =[n,] [n,—1]...[1] is a g-factorial (with [0]! = 1), and n = (n,...,n,,)
where n, € N. The action of the operators on the basis states is given by

N, |n} =n,|n) nﬁln)z [nﬂ—{—l]l/z In + €,) £,In} = [nM]”2 |n—e'u)
(3.5)

where e, is a row vector of dimension m with vanishing entries everywhere except

for the x4 component that has a value of unity.

In the ¢- Bargmann representauon (Kulish and maskmsky 990, Gray and
Nebon 1990, Quesnic 1 1771), thie q- bosGi states and the G- -bOsoh Operaions are realized
by

(=)™
n) — [[ =5 i (2, €C) (3.6)
i (In]Y)
"u — Z'u (36b)
£, — D, (3.6¢)
N,—=2,8,=2,8/0z,. (3.6d)

The g-creation operators 7, effect multiplication by the complex variables =z

ur
ur'hl]n theo mhar Aanaratnre A maacura tha da ac it tha Rargmann
wihé uic q'lluluuul Upviawis v, measure e uuslb\. il z, as i nc Dal gifiaiih

representation of boson operators (Bargmann 1961). However the g-annihilation
operators £, are now represented by the g-differentiation operators D, = D, ,
defined by

f(q'?2) — f(q~'/?z2)

D, f(z) = (g% — g-1/2)z

(3.7

Some properties of these finite-difference operators to be used in the following
sections have been reviewed by Gray and Nelson (1990).

The Cartan-Chevalley generators of u (n) can be realized in terms of the
generators of w,(m) with m = n (Hayashi 1990). In particular, for u,(6) we
abtain

E,,=N, wu=1,...,6 (3.8a)

Epu+1 = a1 Eprtn = Mupiéy p=1,...,5. (3.80)
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By using (2.9) and (3.1), the remaining generators of the u,(6) Cartan-Weyl basis
can be ¢xpressed as

E# iy = q—(N,,+l+...+N,,+,_1)/2,q £ Nup+ -+ Ny o102

pSu+p Epn = g Nutpbn
p=1,...,4 p=2,...,6—pu. 3.9

In this realization, the u (6) unitary irreps are characterized by a single-row Young
diagram [hO...0], where € N, and their highest-weight state |h) satisfies the
equations

sy =6,000)  p=1,....6 (3.10a)
hy=0 u=1,...,5. (3.106)

# pntl

To obtain realizations of su (3) and u,(2), let us now replace the single index u

by a pair of indices ¢, s, where ¢ and s run over 1, 2, 3, and 1, 2, respectively, and
their values are enumerated in lexical order, ie.

p— s 1—-11 2—12 3—-21 4-22 5—=31 6-—-32. (3.11)

Then ]F:w, Ny Ny €4» 2, 3, and D, become Ef;, N2, i, €2, 2, 97, and D,
respectively.

For each s value, we can obtain a realization of suq(3) in terms of N#, ni, £,
i = 1,2, 3, of the same type as that given above for u (6). By using the co-product
(2.7a), the two independent realizations of su (3), corresponding to s = 1 and
s = 2 respectively, can be combined to give the following su (3) Cartan-Chevalley
generators:

H;= E;; = Eyy130 = N+ N} = NJ,, - N}, (3-12a)
2_ " — -

Ei‘,l‘-}-l = 1?}£‘+lq(N| |+l}/4 + q N: Nl+1)/4n'26'2+1 (3‘12b)

Foprg = il €la™MNM/t 4 g M-Nli g2 (3.120)

where, for simplicity’s sake, we have dropped the tensor product symbol ®. By
using (2.9) and (3.1), the two additional generators of the Cartan—Weyl basis can be
expressed as

2 1_arl - NI
E;= E{;) = q-NHZn{E%q(NIZ-Na)/‘* + g (Ni=N3)/ég Nz/2n%§32
1) 2_ a2
+ (g V4 = Py (NNl el o(NT= N2) 4y 22 (3.13a)
Ey = ES) = qMi/nlelqWVi=N/4  g=(NI=N])/3gNi/2 a2
+ (q]/4 _ q-3/4)q-.(Nll—N2)/4 l‘slq(N’z sz)/4 252 (313b)

Note that, for i # j, one simply goes from £;; to £, by permuting the indices is
with js for s = 1, 2, and by changing ¢ into q~'. A similar calculation shows that

E) and E{ can be obtained from E{F’ and EY;’, respectively, by permuting the
mdlces il w1th 2 for i = 1, 2, 3, and by changing g into ¢~
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In the same way, for each i value, we can define a realization of u_(2) in terms
of N7, n{, £, s = L, 2, then combine the three independent realizations so obtained
by using the co-product (2.7a) to get the following u (2) gencrators:

£ =Nl +Nj+ Nj (3.14a)
£t =t £l qUNI=NIHNI=ND/4 o o= (NI=ND)f4ps et o (N3~ N)/4

—~(N]=N{4+N}-ND)[4_s et

4g ! (g 1) 3 145)
T4 363 s i 150)

{
LTV

It is easily shown that:
Lemma 1. The su (3) and u (2) g-algebras, whose Cartan—Chevalley generators are
given in (3.12) and (3.14) respectively, are subalgebras of the u, (6) g-algebra defined
in (3.8).

Proof. The operators (3.12) and (3.14) can be expressed in terms of the Cartan—Weyl
generators of u (6) as

H,=E§ + EF - By — B

w1l GEZ_ER . e m" kY ol VLS el PN
‘l ,+1 - J‘E“ l+1q\ L] 1+ia41/ + q =n |+I I+IJ l: ‘+1 (_)‘13)
Eiprg = BY qm B EL /4 g = (BB ) 4ER
and
£ = Bfy + B + E33
£t = it (Ba-ER+ES-ERY/4 4 (Bl -Ef)/4pst (B -E)/¢ (3.16)
+ qw(E}}-Eﬁ+E’z’e—E§)/4Eg§ (s#1). O

In the limit ¢ — 1, the operators (3.15) and (3.16) become su(3) and u(2)
generators, given by

Hy= S0 (B - By iq) E;=)Ef (¥ (317
and
£ = YRy (3.18)

respectively. Since the latter commute with one another, they provide a realization of
the direct sum of Lie algebras su(3} @ u(2), embedded into the larger algebra u(6)
generated by EZ}.

To determme what is the g-analogue of this property, it is useful to establish the
following result:

Lemma 2. The Cartan-Chevalley generators (3.12) and (3.14) of su (3) and u (2)
commute with one another.
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Proof. Consider for instance the commutator of £!2 and E,,. From (3.15) and
(3.16), it can be written as

[£2, By = GBEN+ER - 2B+ B - B 43)/4 [EL2, EL -
+ g~ (BN —9ER+EZ-ES4ER-1)/4 [g12 22 o
+ g~ (B~ BT ER-ELABE+0/4 112 glY]
4 g~ CEH-Tf -3EL - B+ ES43)/4 [R12 22 .
4 g~ (En—9Ef+ER)/4 [EL2, EL}]
+ g~ OB -ER-2E3-ER)/4 [g12 p27) (3.19)

On the right-hand side of (3.19), the first and fourth g-commutators vanish due to
the cubic g-Serre relations (2.11a) and the correspondence (3.11); the same is true for
the two commutators as a consequence of the quadratic g-Serre relations (2.2} and
the definition (2.9). From (3.1), (3.8) and (3.9}, the second and third g-commutators
become

N 1_ sl 22
[Bi B3] -1 = [nie]. a= M/ nigl], L = o~/ 2n]e] = ™ (3.20a)
~N? (NI 11
(B, B3], = [n3€, a1/ inle)], = —qm (MmN D2niel = —g(Butl/2IER (3.20b)

Hence the right-hand side of (3.19) is equal to zero.
The vanishing of the remaining commutators can be proved in the same
way. O

Remark. The operators (3.15) and (3.16) do not commute with one another for
any realization of u (6). The demonstration of Lemma 2 indced depends in an
essential way on the g-boson realization (3.8), since the relation between [Eff, Ef] _,
and [E},Efj], that follows from (3.20) cannot be derived from the u,(6) defining

equations with the help of the g-Jacobi identity. This result contrasts with the ¢ — 1
limit, wherein the commuting property of the su(3) and u(2) generators (3.17) and
(3.18) is independent of the realization chosen for the u(6) generators.

Since in the g-algebra case, we cannot consider a direct sum of algebras because
su (3) and u (2) have the unit operator in common, let us make the following
definition:

Definition. Let su,(3) + u (2) = U, (su(3) $ u(2)} denote the associative algebra
over C generated by I, H;, E; ;4 Eipy £, 4, 5,1 =1, 2, where Hy, E, .,
E; 41 and g5t satisfy the defining relations of su (3) and u (2) respectively, and
commute with one another.

The results obtained in the present section can be summed up in the form of a
theorem.

Theorem 1. The operators (3.8), (3.12) and (3.14) provide a realization of the g-
algebra chain

U, (6) D su (3) +u,(2). (321)
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4. Complementarity of su (3) and u_(2)

In the present section, we consider the polynomials in the g-creation operators P(%})
that satisfy the equations

ENP(n)I0) = hy P(n{)I0)  ERP(n])I0) = h, P(n)|0)  (4.1a)
£2P(n)|0) = 0 (4.1b)

and

H P(n])I0) = k, P(n]){0) Hy P(n})I0) = kp P(n]}I0)  (4.2a)
EppP(ni)i0) = ExP(n})I0)=0 (4.2b)

where hy, hy, ki, k; € N and h; 2 h,. The corresponding g-boson states P (7] ){0)
are then sunultaneously highest wenght states of u q(2) and su,(3) irreps characterized
by Young patterns [hjh,] and [k, + k,,k;,0] = (kyk,). To keep the notations
as simple as possible, we have dropped the indices hy, h,, k,, k;, o that should
be appended to the symbol P in (4.1) and (4.2) (with « distinguishing between
independent solutions corresponding to the same values of hy, hy, ki, k,).

We start by solving the system of equations (4.1). The results can be stated in the
form of a lemma. In the latter, use is made of g-binomial coefficients, defined by

1
]’ O0gkgm

[T:] = ¢ (K] m - &) (4.3)

0 E<0 or k>m,
Lemma 3. The simultaneous solutions of (4.1} can be written as

P10y = 3" Al (Y=o (d) e (nhyd (nd ) e bt (nd) o+ ()P j0) (4.4)
abed

where the summations over a, b, ¢, 4 run over those non-negative integers such that
hyga+b g hj+hy,atbdb—h, < cgmin{a+b, k), max(0,c—a) < d € min(d, ).
For given (ab), ail the coefficients AE‘;‘” corresponding to different ¢, d values can
be expressed in terms of those associated with the minimal ¢ value as follows:
A(ab) ( l)hz-—a b+cq( (hi=h4+b42)(hz—a—b+c)+{2hz—a-b)d) /4

min(b,a+b—hz} r

r\
x 2, 4

t=max(0,db—hy)

t]fh, - b+ 1) () 4
M-l er af A @9
For hy € a + b < hy, the latter are linearly independent, whereas for Ay < a4+ b
h; + h, they satisfy the relations

min(b,a+b=hy)

_ b-t hy~b+t s
(Zhy~a—b+2)t/4 2 (ab) =0 4.
1 [b—d][a—hl+d-—1]A“+" havt “8)
t=max{0,b—hs)

where d runs over all the integers such that max(0, 2y —a+1) < d < min(b, A+ 1).
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Proof. In this proof as in the following ones, it is advantagcous to use the q-
Bargmann representation of g-boson operators so that all operations reduce to g-
differentiations.

From (3.144) and (3.6d), it is obvious that the simultaneous solutions of the
system (4.1a) can be written in the form (4.4), where the coefficients A(%Y are
defined as vanishing whenever the inequalities @ > 0, 6 2 0, a 4+ b < h; + ks,
max{0,a + b — h,} € ¢ € min(h,,a + b), max(0,c — a) € d < min(b, c) are not
fulfilled, but are otherwise arbitrary.

Introducing now (4.4) into (4.1b) and taking (3.14b) and (3.6b,c,d) into account
lead to the following recursion relation for the coefficients AE:‘;”) with fixed (ab)
satisfying the conditions @ >0, 52 0, a + b < hy + Ay

q(2c—a-b)/4[h2 —a-b+ c]ASib) + q_(m-h;+a+zb-zc-zd+z)/4 [a~c+d+ 1]A£ril_b:),d

+ q—(hl—h2+b—2d+2)/4 [b"'- d+ I]Aﬁabl)d 1= 0 (4‘7)

In (4.7), ¢ varies in the range max(0,a + b~ hy, + 1) € ¢ < min(k; + 1, + b).
Hence we have to distinguish the following cases:

L Oga+b<h, 0Lcga+d
I0L hy<a+b<hi+h, a+b-h+1<cgh +1

together with max(0,¢c ~ a) € d € min(d, ¢).

In case I, for ¢ = d = 0 equation (4.7) gives Af)gb) = 0. Then by induction over
c, one obtains A 24— for any allowed values of ¢ and 4.

In case II, the solution of (4.7) is given by (4.5), where the coefficients Ag"fb hoot
remain undetermined because there is no equation (4.7) for ¢ = a+ b—h,. Equation
(4.5) indeed reduces to an identity for ¢ = ¢ +b— h, and can be proved by induction
over c in the range ¢ + b— A, + 1 € ¢ € e + & by using the definition (4.3) of
g-binomial coefficients and some elementary propetrties of g-numbers.

The treatment of case I1I is similar to that of case [T fora+b— A, +1 K ¢ € Ay,
but there is now an extra condition coming from (4.7} for ¢ = h; 4 1. It amounts t0
setting the right-hand side of (4.5) equal to zero for this c value, thereby leading to
(4.6). O

imnltananne nnlnhnnc of fA 1\
anegus s

mnar talra aduvanta
u Qadiiol

1iia o oa Y
Yfw ILUYY LAAW Valllﬂs U o
and (4.2). In the following lemma, we make use of the g-binomial formula (Gasper
and Rahman 1990)

lf—\mrn
it

CEIEDY [T] 2™ kgt meN. @9)
k=0

The g-binomial satisfies the following properties:

(z; y)g =1 (4.10)
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m=1
()P =[[(e+a5 2  ment @.11)
k=0
()7 = (w¢*2y) 7 " m F ) n=0,1,...,m (4.12)
D (zy)] = [m](zy)7! (4.13)

where in (4.12) one takes either the upper or the lower signs. As clearly seen from
(4.11), it is not a fuaction of = + y contrary to the standard binomial. This is why
(x; ¥)7" is used instead of the notation (z + y)7* that can be found in some previous
amcles (e.g. Ruegg 1550).

Lemma 4. Equations (4.1) and (4.2) have a simultaneous solution if and only if
ky=hy~h, ky = hy. (4.14)

This solution is unique up to a multiplicative factor and given by
Phba(y8)]0) = (gh)h=h2 (nind —q (bt D/l 10y (4.15)

Proof. By using the ¢g-Bargmann representation (3.6) as well as properties (4.9) and
(4.13), it is straightforward to show that when (4.14) is fulfilled, the g-boson state
(4.15) satisfies both (4.1) and (4.2).

The second part of the proof is more involved. Let us first determine the extra
conditions to be fulfilled by A(c‘fib) so that the g-boson states defined in (4.4) are also
solutions of (4.2). Equation (4.2a) leads to the relations

ACY =0 if k4t hy—2a—bEk, of a—bFEk,. (416)
Hence the summations over a, b disappear as these parameters are given by

a= b +hy—ki+ k) b=+ hy -k ~2k). (417
Moreover, (4.2b) imposes that the following recursion relations be satisfied by A(c‘;bj:

ghithomZebtd/d e g4 1A% +la-c+d]AlP =0 (4.18)

qe=o+D/[d 4+ 1)L + b~ d A =0 (4.19)

min(hy, e + b),

where ¢ and 4 vary in the ranges a + b — h, — 1 € ¢ £
€ ¢ § min(h,,a 4+ b),

max(0,c —a+ 1) € d € min{b,c), and e + b — h,
max(0,c —a — 1) £ d < min(b — 1, ), respectively.
Considering successively (4.19) for d = ¢—a —-1,c-a,...,min(b~1,c), and
any c in the range a < ¢ < min(A, a + b) shows that the coefficients 45" vanish
whenever the conditions 0 € b € hy, a+ b~ hy € c € a,0< d < min(b, ¢) are not
fulfilled. Equation (4.18) for ¢ = a,a —1,...,a + b — h,, and any d in the range
1 € d < min(b, c), then indicates that the only surviving coefficients correspond to
0gbg hy,a+b-h, < cga,and d = 0. Considering (4.19) again for 0 < b < h,,
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a+b—-hy<cga,and d =0, only leaves the coefficients Ai‘l‘lu), which by iterating
(4.18) can be expressed in terms of Affu") as follows:

Al = (~1)emeglem °><hr+hz*2“+2>/“[ ]A‘“‘” 0Sa-h,<cga.  (420)
It is easily checked that (4.18) and (4.19) do not impose any further restriction on
Alat)
aU N

It now only remains to combine (4.20) with conditions (4.5), (4.6) and (4.17). For
b= d =0, (4.5) becomes

(aU) = (- 1)hg-ra+c ~(hy— h2+2)(h2—a+c)/4[ hy ]A(aﬂ) (4.21)

a—o¢ aw b0

Introducing (4.21) and a similar result for A(“”} into (4.20) leads to

h a
(q(“‘”(“”‘ﬂ“[a 2 ] - L i D A =0 0Ka-—h,<ega (422)

-C - C

Hence a = h,, and the only non-vanishing coefficients are
A(hzu) - ( l)c ~(h1—hz+2) c/4[ ]A(hzu) 0 £cg hZ' (423)

Equation (4.6) is then automatically satisfied, while (4.17) directly leads to (4.14).
By inserting (4.23) into {4.4) and taking (4.9) into account, one finally obtains the
solution (4.15), whose uniqueness has thus been proved. a

Since (4.1) and (4.2} have a solution for any h,, h, € N, such that h; > h,, the
results obtained in the present section can be summed up in the form of a theorem.

Theorem 2. For the g-algebras considered in theorem 1, the reduction of a u, (6)
irrep [AO. .. 0] into a sum of su,(3) + u,(2) irreps is given by

(0.0 L T ((hy = Ry ) + [y (424)

hizha

where there is no multiplicity.

5. Casimir operators of su_(3) and u,(2)

As a consequence of the complementarity between su(3) and u(2) within single-
row irreps of u(6), the boson realizations of their Casimir operators are functionally
dependent on one another. In the present section we show that this property can be
extended to the g-boson realizations of the corresponding g-algebras.

The Casimir operators of g-algebras, in particular those of su (n), have been
the subject of various recent studies (Pasquier and Saleur 1990, Chakrabarti 1991,
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Rodriguez-Plaza 1991, Zhang et a! 1991, Gould et al 1991, Bincer 1991). Here we shall
follow the approach of Rodriguez-Plaza (1991), based upon a theorem of Faddeev
et al (1988). In the latter, the generators Z,,k = 0,1,...,n — 1, of the centre
of su,(n) are constructed in terms of the universal R-matrix and the fundamental
representatnon of this g-algebra. The n — 1 independent Casimir operators of su (1)
are then defined as those linear combinations of the Z,’s that approach the Casimir
operators of su(n) in the limit ¢ — 1.

In the notations used in the present paper, the two generators of the centre of
su,(2) can be written as

Z,= (ql/z - q—1/2)-2(q1/2+ q—IIZ)I (5.1a)
Zl = 812821 + [%(811 _ 822 ] [% gll _ 822) _ 1]
+ (a2 - VTP 5+ VY (5.1b)

From them, we find the single Casimir operator
oy = 2, - 20 = 1368 4[4 (8 - 2] [3 (61 - £2) -1
= gilgh? + [% (E“ - 822)] [% (gll _ 822) + 1] (5.2)

whose limit when ¢ — 1 is the usual su(2) quadratic Casimir operator

C=1) v (5.3)
at
where
£t =gt — 167 Y gm, (54)

Since we deal here with u (2) instead of su,(2), we have to supplement C,, With the
g-analogue of the u(2) linear Casimir operator C; = %~ £°¢, namely

G, = [N+ &5 . (5.5)
In the su,(3) case, the centre of the g-algebra is generated by the operators
Zy= ("~ a7 g+ 1+ a7 (5.60)
Z] = q(H;+2H1—3)/6E]2E21 + q(Hl—Hz+3)/ﬁE§;)Eél_)
+ q'(zH‘+H2_3)/6E23E32 + (qlfz - q—l/z) -2
x (q(2H1+H1-3)/3 4 g E=H/3 q—(H1+2Hz—3)/3) (5.6b)
Z,= q_(H,-o-sz-s)/aElezl + q-(Hl—Hz+3)fﬁE§;-) E_E,}L)

- -2
+ q{2H|+H1_3)/6E23E32 + (qlfz -q 1/2)
X (q-(2H1+H2—3)/3 + gUF=H2/3 4 q<H.+sz—3)/3) (5.6¢)
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where use is made of the operators El(f), ng), defined in (2.12). From them, two

Casimir operators can be constructed, namely
Cyy =21+ 2, - 22,
— %(q(H|+2Hg-3)/6 + q—(H1+2H2—3)/6) E,Ey + %(q(H|+2H2+3)/6

+q—(H1+2H2+3)/6) Ey Ep+1 (q(2H|+H2—3)/6+q—(2H1+H1-3)/6) EFy

+ %(q(zmmm)/ﬁ + q—(zm+Hz+s)/6) By By + Lqm(Fa=Hi43)/6
+) -+ +) i+ - =) (- -} -
x (BPED + EP B + 1g-1330e(EQ ED 4 B ES)

+3a+a ) (BH, + 1) + (i, +2m))) + [3(H, - 1))

= (q(H.+sz+3)/6 + q—(H1+sz+3)/ﬁ) Ep By + (q(2H1+H1+3)/6
+ q-(2H1+Hz+3)/ﬁ) Egy Epy + g~ (1= Hed®)/6 p(H) pl4)

O IORE B L (Y2t 4 1,4
+{WH +2H, + 3 + [3(H, - H)Y -2 (5.7)
and
Cyy = 2(q"2 - ‘1_1/2)—1(31 = Z,)
= [}(H, +2H, - 3)| E\;Ey + [3(H, + 2H, + 3)| Ey By
~ [3(2H, + Hy = 3)| EpyEyy — [§(2H, + Hy + 3)| EnEy

_ -1 _ - _ _ _
+ (qllz - 4q 1/2) [Q(Hl HZ+3)/6(E£3 )Eél ) + E_gn )E‘Ea ))

_ g h=H /80 p 4 g Eg;&))]
+2[L2H, + HD)[L(H, + 2H)){3(H, — Hy)]
+ [§(4H, + 2H,)] = [L(2H, + 4Hy)]
=2(3(H,+2H, 4+ 3)|E) Ey; = 2[3(2H, + Hy + 3)| E,Ey
F2(q g V7)™ g~ IS B B g (=S B B0
+2[3(H - Hy)|[3(2H, + Hy + 3)| [J(H, + 2H, + 3)]. (5-8)

In the limit ¢ — 1, they go to
C'2=ZE'-J-E_5,- Cy= %.EEE‘UE‘”‘EH—ZE”EJ" (5.9)
) if 3]
respectively, where
E; = E; - 5 ;Ekk' " (5.10)

It is now easy to establish the following result:
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Theorem 3. When the su (3) and u_(2) generators are realized by (3.12) and (3.14)
respectively, the corresponding Casimir operators satisfy the equations

Cyy = (q(N+3)/6 + q—<N+3J/6)c2q + RN+ + AN +6) + [N -2

(5.11a)

Cay = 2[4(N +3)){Cy ~ IV + )] [1N]} (5.11b)
where N is related to C,, by

¢, = [N]. (5.12)

Proof. Direct verification using the commutation relations (3.1). O

Remark. Theotem 3 can be checked by comparing the eigenvalues of the su (3)
Casimir operators corresponding to an irrep (hy — h,, h,) = [~ 0]

2 2 2
(Cog) = 320 = ho + 3]+ [(hs + by + 3] + [J(R1 = 20)] " -2 (S139)
(Cs,) = 2[5(2hy — hy + )] [3(hy + hy +3)] [3(A; - 2h;)] (5.13b)

with those of the u, (2) Casimir operators associated with the complementary
irrep [hyh,)

(Cig) = Ry + k] (5.14a)
{C) = [3(h1 = R))[3(hy = Ry +2)]. (5.14b)

6. g-boson realization of the su,(3) Gel'fand—Tseitlin basis states

The purpose of the present section is to build the GT orthonormal basis for an su,(3)
irrep (h, — k4, h,), in the realization where its highest-weight state is the g-boson
state (4.15). The basis vectors

hy h; O
Py Py hi2p2h 2P
T

W

0 PLZr2p (6.1)

are specified by definite irreps [p,p,] and {r] of the u,(2) and u (1) g-subalgebras
of suq(3), spanned by I, H,+ H,, H,, E;, E;, and I, H| + H,, respectively. With
respect to the u,(2) g-algebra complementary to su (3), all of them are highest-
weight states of irreps characterized by the same Young diagram [h h,].

According to Ueno et al (1989), the GT vectors (6.1} can be constructed in two
steps from the normalized highest-weight state

hy hy O
h, h2> (6.2)

hy

\hih,) =
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by using lowering operators for u (3) and u (2), whose explicit form is given by
(Quesne 1992)

L} = Ey|Ey — Ep+ 1] + By Eypq(Fn-Fatt)/2 (6.3a)

L= Ej (6.3)
and

L) = Ey (6.4)

respectively. First, one determines from |h h,) the semi-maximal states, i.e. those
states of highest weight in the u (2) g-subalgebra of su,(3),

hy hy 0\ _
PP

where the normalization factor is given by (Ueno et a/ 1989, Quesne 1992)

M by O Rihaf p2yhe-p2y r1vha—p 6.5
P P = Nmpz (L3) (L3) Ehlh2> ( - )
Py

Niho - ( [p1 — ho}![py + 1! [Po]! [Py — Py + 1] )1/2'
e T A by = il The = p2 + 111y = ot [y — Rol! A + 1]t Ay

(6.6)

Second, one obtiins the general basis states (6.1) from the semi-maximal ones by
using the relation

hy hy O -r|hy R, O
P P2 >= Npw(LyPTT > 6.7)
r Py P
where
r [ 172
NP — ( \7' = palt ) - (6.8)
i (21 —ple - r}!

To apply this procedure, we need the explicit form of the normalized highest-
weight state (6.2). It is given in the following lemma:

Lemma 5. The g-boson state
lhyhy) = Afthz pRiba(e)i0) (6.9)

where Phhz(p¢) is defined in (4.15), and AP1hz by

hihy _ ghe/4 ghiks mhy _ (1= Ry 1] 12
b= ettt = (o @10

is the normalized highest-weight state of an su,(3) irrep (hy — hy, hy).
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Proof. In the corresponding boson case, the normalization coefficient AM*2 s
calculated by making use of some properties that have to do with the differentiation
of a determinant, more specifically with the effect of the Cayley operator upon the
mth power of its determinant (Turnbull 1960). In the case of a 2 x 2 determinant,
the latter is given by

-1

(8183 — 8187) (2123 = 232]) " = m(m + 1) (215} — z120) ™. (6.11)

The g-analogue of this relation results from (4.12) and (4.13) and can be written as
(DLD - ge=mV/2DL D) (el s -~ 4f )]

= q_”z[m] [m+1] (z}z%; —q'("’"'])nzéz%);n_l acR. (6.12)

The g-Bargmann representation, as well as (4.12) and (6.12), lead to the recursion
relation

(AM)" = /2[R + 1][Ag]) " (AR =R (613)

from which (A’“’”)z can be expressed in terms of (Ahl“’”-”)z, given by (3.3). The
final result is (6.10).

It is now straightforward to obtain the explicit form of the GT vectors.

Lemma 6. The semi-maximal and general GTr basis states of the su ,(3) irrep
(hy = h,, h,), whose highest-weight state is given in (6.9), can be written as

hy hy 0 hihy phihag, s
pl pz > APIP: P:m‘pzz(ni )lo) (6.14)
f hy 0 hih hih
P1 P2 )= Appar Pprprr (00)10) (6.15)
r

where

hih 1 —h hy— . - - FAY
P (nf) = ()™ ™" {(n3)" 771 (g mg; ~q~ P PAR/S i) 7

— —— — h -
x (ning; —q~(R=hemp D/ plyh) 272 (6.16)

s r—h —(hi—hs #ley—py—nul||hz-p
Pl (nty = (n) "™ 3o (gt reae) [ e H : z]
m

It
X (Tl%)p‘"""“ (n}!)m—mw (nind; g (P=P2-2u+2}/4 nén%):z-&u

hoe po—
x (n}ng;_q—(h1--h2+?1-?2—r—2#+2)/4n;,ﬁ)qz Pa=# (6.17)
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and

Ag:;};; = (hz+(h:—m)(hz-PzJ)/‘*B;lll;lzz (6.18a)
= ( [y = by 4 1)1 (py = p, + 1) )" e
Pip2 (A — ]! [hl —pz+ 1 p; = h) [Ry — P [ + 1] [p,]!

A?,‘;}:zzr = q(-’t2+(h1 p)(hz—pr)+p2(pi—r /48:;11;21,. (6.19a)

B = ( [P = P2+ Wby — by + Y p; = 71 [r = pyl! )'“ . (6.19)
Pipat [h - Pl]' [h —-p+ 1]! [P] - hz]! {hz - Pz]! [P1 + 1]! [Pz]!

Proof. The demonstration is based upon (6.3)—(6.10) as well as the relations

(L™ Pl = Bl phi i) (620)

h _ - h
(LY™77 Phia(ye) o) = glhi-pies m)/“{ 2}, Phia(y)j0)  (6:21)

and
(L)777 Plara(ns)10)

) 2hamp hae (1
= g [ ]t ()M TP (s — g (PR )

x Zq—-m(m )2 [hz pZ] [ P — h’ ] })r-h2+m (n;)m—f‘—m

pPp—r=
% (nllng;_q—(h, hatpi— pz-r—2m+2)/4n n )hz pr—m
X (n;ng’_q_(h1+hz—r—2m+2)/4 lnz)q |0) (6.22)

which can be proved by induction over hy — py, ky — p,, and p, — r, T€Spectively. In
the final step of the demonstration of (6.17) and (6.19), use is made of the identity

™m o m
Z(_I)kqi( 1}k /2 [k] = '5m,u (6.23)
k=0

leading to the relation

(21) (z ;=9 zszz Z( —q )“[ ](zz)m p( 3)#

p=t

m=iy 1_2, —x - H
X (z}z%;—qﬁi“lzz;z%)q (2]23; —gP —otls sz;zlz)q (6.24)

valid for any m € N, a, § € R, and either the upper or the lower sign choice. 0
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Remarks. (1) In (6.17) and (6.22), the range of the summation indices p and
m is restricted by the definition (4.3) of g¢-binomial coeflicients, ie. 0 € u <
min(h, ~ py, py — 7) and max(0,h, — ) € m < min(h; - py,p, = r). (2) In the
g — 1 limit, the results contained in (6 15), (6.17), and (6 19), go over, as they must,
into the corresponding su(3} results given, for instance, in equauons (A2) and (A3)
of Moshinsky and Chacon (1968).

The GT vectors given in lemma 6 are written in terms of monomials in n!, and
of g-binomials depending on tensor products of two g-boson creation operators and
on the deformation parameter g raised to a power that varies with the state (and the
term) considered. It is useful to express the vectors in an alternative form wherein
the building blocks are independent of the state considered and, at the same time,
the g-binomials are replaced by ordinary binomials.

This is possible by introducing an explicit dependence upon the number operators
N;, as shown in the following lemma:

Lemma 7. The relation
1 2 _ 1 2 m
(VN gl — g NIENED/ L 2) T 0) = /4 (s — g mlnE) " O)
(6.25)

is valid for ¢ = 2, 3 and any m € N.

Proof. Equation (6.25) can be demonstrated by induction over m starting from
m =1 and using (4.12). O

With the help of this lemma, it is easy to arrive at the searched-for expressions
of the GT vectors, given in the following theorem:

Theorem 4. The maximal, semi-maximal, and general Gel'fand-Tseitlin basis states
corresponding to an su (3) irrep (hy — hy, h,), and given in lemmas 5 and 6, can be
rewritten as

h hi—h

|hihy) = BMP2(ni3)" (mi)"' ™ 10) (6.26)
h, h 0 hy— -k hi=p1

1p1 2p2> Bprz(aip)? (mi3) " TP ()" ()M THO) (6.27)
hy hy, 0 .

Rih —(pi—pr-u41}/2 Pr—Py— i|[hy— D,
by p2> Bm‘mer(_q (Propmet },) { =P ][ K ]

! r { H

_ r—h - hy—
» (nlz)mﬂt U}%)hz Pr— .u(nl1) Z(U%)p' #(77:1;) 1 pl+#-lo) (6.28)

where

(NI 4+NI+1)/4 S(NTENTRD G L2 i=1,2  (6.29)

~(NUHZNGENEHT/4 Lo (6.30)

nr=q

~—12 q(N;+N$+1)/4

’7 Tl - q
'hﬂs"q

and the order of the non-mutually commuting operators on the right-hand side of the
relations does matter.
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Proof. The g-binomial depending upon nln? and nin? is first commuted to the right
and replaced by a number-dependent ordinary binomial with the help of lemma 7.
The latter binomiai is then commuted to the left. This procedure leads to (6.26). In
the cases of (6.27) and (6.28), it only remains to perform the same transformation on
the second g-binomial depending upon 7]7? and nini. a

Remarks. (1) Although the operators 7! commute amongst themselves, they do not
commute with '712’ n,:,, n13, nor do the latter commute with one another. As already
noted by Biedenharn and Lohe (1991a,b) in the u (2) case, only monomials such

as g(NIHNIHD/S o2 and g (M+NHD/4 plp2 have simple commutation properties
amongst themselves ‘and with r;l (2) The commutation properties of the operators
(6.29) and (6.30) with the su (3) and u,(2) generators are also quite complicated.
Such intricacies are related to the problem of constructing irreducible tensors with
respect to su,(3) (Rittenberg and Scheunert 1992), to which we hope to come back
in a forthcoming publication.
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